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SUMMARY . 

A linear relationship was found between the radiance measured by the 

Landsat 2 MSS7 and the aerosol content above inland bodies of water. This 

relationship can be used to estimate the aerosol content with a standard 

deviation of 0.42N. This uncertainty is about three times greater than that 

found over the ocean for MSS6. Analysis of the data for MSS6 and MSS7 suggests 

that the larger uncertainty is mostly due to water turbidity, with little 

contribution from the adjacency effect. 

It appears that the relationship found 

be applied to determining an average aerosol con 

given target, or an area average at a given time 

together; the averaging could reduce the uncerta 

content to a useful level. 

in this investigation would best 

tent over a period of time at a 

over several targets close 

inty in the measured aerosol 

It is recommended that the adjacency effect be investigated 

experimentally by conducting a study, similar to this investigation, using 

oligotrophic lakes as targets, thus eliminating water turbidity effects, with 

ground truth measurements of the optical thickness being made directly adjacent 

to the lakes. Such a program could provide input for modifying the theory of 

adjacency effects, and perhaps for determining an empirical correction, if 

necessary, for adjacency effects. 



1. INTRODUCTION 

Tropospheric aerosols play an important role in environmental quality 

on local, regional, and global scales. The local and regional aerosols impact 

mainly on the ambient air quality, and changes in the global background levels of 

aerosols may affect our climate. The use of space observations for monitoring 

tropospheric aerosols on a quantitative basis has been limited to ocean 

areas. (1y2y3) Landsat data14) were originally used to demonstrate that a linear 

relationship exists between the upwelling visible radiance and the aerosol 

optical thickness (essentially all of this thickness is in the troposphere) over 

oceans. Since that time, similar relationships have also been found for sensors 

on the GOES and NOAA-5 satellites. (5) The linear relationship has been shown 

theoretically to vary with the aerosol properties, such as size distribution 

and refractive index, although the Landsat data obtained at San Diego showed 

little variability in the relationship. A global-scale ground-truth experiment 

was conducted by Science Applications, Inc. (SAI) and NOAA in the summer of 1980 

with the AVHRR sensor on NOAA-6 to investigate the relationship at different 

sites around the globe. 

It is desirable to extend the measurements over oceans to over land 

masses. However, the land measurements are much more difficult since the surface 

reflectance is high, so that the upwelling radiance comes mostly from the surface 

and is quite variable, both spatially and temporally. It was suggested in the 

SAI Landsat study(') that the ocean technique might be useful over land masses if 

the near infrared (MSS7) radiance over targets such as rivers, lakes,and 

reservoirs is used. This near infrared radiation does not penetrate water so 

deeply as the visible radiation, so that the upwelling near infrared radiance 

seen by the satellite is less influenced by the suspended matter generally found 

in the inland bodies of water. In addition to water turbidity effects, another 

potential problem for inland sites is the adjacency effect, in which the 

upwelling radiance above a small body of water is enhanced due to radiation 

reflected from the adjacent high albedo land. 

The present investigation uses Landsat 2 radiance data and ground-truth 

measurements of the aerosol optical thickness, obtained previously at five inland 

sites, (1) to study the usefulness and limitations of the near infrared radiance 

over inland bodies of water. 
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2. APPROACH 

The relationships(') between the upwelling visible radiance measured by 

Landsat 2 over oceans and the atmospheric aerosol content* are shown in Figure 

2-l. The results for MSS7 are not shown since the low radiances for this channel 

were uncertain due to NASA procedures for producing the Landsat 2 computer 

compatible tapes. The correct radiance values for MSS7 must be obtained from the 

raw data tapes which are uncorrected for the different responses of the six 

detectors in each MSS channel. The problem did not exist with the Landsat 1 data 

tapes, and results for all four MSS channels were obtained, (1) as shown in Figure 

2-2. (The differences between the relationships shown by Landsat 1 and Landsat 2 

are attributed to differences in the radiometric calibrations of the sensors. (1)) 

It is seen in Figure 2-2 that the results for two inland bodies of 

water, a large lake at Grand Prairie, Texas, and a small reservoir at Atlantic 

City, New Jersey, show good agreement with the ocean data for MSS7. The Grand 

Prairie data are of particular interest since the MSS4, 5,and 6 black and white 

imagery clearly showed water pollution in the lake. The agreement with the ocean 

data is attributed to the fact that the MSS7 (0.9 pm) radiation does not 

penetrate the water so deeply as the visible radiation, and hence is less 

influenced by the water pollution. It is also noted that the Atlantic City 

results do not show radiances higher than the ocean values, which would be 

expected due to the adjacency effect even if water pollution was not enhancing 

the radiance. These results and others led to the suggestion (1) that the MSS7 

channel could be used to minimize water pollution effects on the radiance-aerosol 

content relationship, and that the adjacency effect is less than indicated by 

theoretical calculations. 

In order to investigate the usefulness and limitations of using the 

upwelling near infrared radiance over inland bodies of water to determine the 

atmospheric aerosol content, ground-truth measurements, obtained previously (1) , 

*The aerosol content is defined in terms of the Elterman (6) model vertical 
aerosol optical thickness; i.e., the aerosol content is given by the ratio 
(measured aerosol optical thickness at wavelength X to the model aerosol optical 
thickness at wavelength X) x N. In the results reported here, the wavelength is 
always 0.5 pm, and the model aerosol optical thickness is 0.213 (to the base e). 

2 



II 

4 

3 

2 

1 

0 

MSS4 

MSS5 

MSS6 

Regression Lines 

N 

Aerosol Content 

2H 3N 

Figure 2-1. Landsat 2 Radiance vs Aerosol Content at San Diego 
for MSS4, MSS5,and MSS6. 
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at five inland bodies of water for a total of twenty-four Landsat 2 overpasses 

have been used in conjunction with radiances determined from the raw data tapes 

for those overpasses. In addition, methods suggested by other workers for 

satellite measurements of aerosols over land have been reviewed. 

2.1 Test Sites 

The ground-truth sites used in this investigation are listed in Table 

2-l. The ground-truth measurements at San Diego were made by SAI personnel using 

a Volz sunphotometer. The Atlantic City site is part of the NOAA-EPA turbidity 

network which uses an Eppley sunphotometer. The LACIE (Large Area Crop Inventory 

Experiment) sites are operated by NASA-Johnson Space Center and utilize 

radiometers similar in principle to the Volz sunphotometer. 

The inland site at Burke is a river about 500 m wide and 300 m from the 

sunphotometer location; the Divide target is a lake 2000 by 500 m at a distance 

of 500 m from the sunphotometer site; the Toole target is a ,lake 500 x 500 m at a 

distance of 3000 m from the sunphotometer site; the Hill target is a river about 

1000 m wide and located about 8000 m from the sunphotometer site; and the 

Atlantic City target is a reservoir, approximately 300 x 2000 m, located about 

2000 m from the sunphotometer site. 

The ocean data, used as a reference set in analyzing the inland site 

data, were obtained at San Diego where the sunphotometer measurements were made 

on the shoreline, and the ocean target was about 1000 m from the sunphotometer 

site. 
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Table 2-l. Test Sites 

SAI Site 

San Diego, California 32’ 45’ N 

NOAA - EPA Site 

Atlantic City, New Jersey 39’ 27’ N 

LACIE Sites 

Burke Co., N. Dakota 

Divide Co., N. Dakota 

Toole Co., Montana 

Hill Co., Montana 

48’ 53’ N 
48’ 53’ N 
48’ 53’ N 

48’ 42’ N 

117O 10' w 

74O 34’ w 

102O 10’ w 
103O 11’ w 
111O 47' w 

109O 55’ w 



3. OTHER METHODS FOR SATELLITE MEASUREMENTS OF TROPOSPHERIC AEROSOLS OVER 

LAND 

A few techniques for satellite monitoring of tropospheric aerosols over 

land have been suggested by other workers. Tropospheric measurements appear to 

be limited to the visible and near infrared spectral regions since the atmosphere 

is optically thick at shorter wavelengths and is too thin at longer wavelengths. 

Active (laser) methods from satellites are not considered since they do not seem 

suited for tropospheric monitoring. (71 The method investigated in this report has 

limitations in that the ground resolution element of the satellite sensor must be 

smaller than the water target. In addition, the aerosol content is measured only 

above the water surface. However, the high resolution of the MSS, and the future 

thematic mapper, allows suitable bodies of water to be found in most areas. The 

other potential limitations of water pollution and the adjacency effect are 

discussed in later sections. The methods of other workers are outlined below. 

Potter and Mendlowitz(8) plotted the MSS4 radiance of each pixel in 

part of a Landsat scene against the MSS5 radiances of each pixel, and showed that 

the y-intercept of the regression line is correlated with the aerosol optical 

thickness. The results looked encouraging and were investigated further in this 

study, as discussed in Section 3.1. 

Potter and Mendlowitzt8) also showed that the minimum radiance values 

of MSS4 in a scene are related to the aerosol optical thickness, although the 

correlation does not look convincing. The method would probably look better if 

MSS7 radiances were used and if it were limited to scenes containing bodies of 

unpolluted water. Of course, the technique would then be essentially that which 

has been used over oceans, (1) and is being investigated in this study for inland 

bodies of water. 

Rogers(') plotted histograms of the pixel radiances for two Landsat-l 

passes over Los Angeles, and showed that there was a general increase of the 

radiance values with an increase of haze. At low radiance levels this is 

basically the same as the minimum radiance methodt8'; at high radiance levels 

(corresponding to high reflectivities), the increase is surprising since both 

theory and desert data(') show the radiance at high reflectivities to remain 

essentially unchanged or to decrease. 
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It has been suggested that information on aerosols could be obtained by 

angular scans of the sensor in azimuth or in nadir. This will certainly change 

the scattering angle of the observed radiation, and in theory, for a Lambertian 

surface reflectance and ahorizontally homogeneous atmosphere, will permit 

determination of the aerosol content and other aerosol parameters. However, in 

practice these ideal conditions do not exist. In particular, the surface 

reflectance, which is generally non-uniform over land, can change quite rapidly 

due to rain or dust cover, and slowly due to man-made changes in structures and 

surfaces. In addition, the effective reflectance will vary with sun angle on a 

daily basis due to the presence of buildings, and on a seasonal basis due to the 

presence of vegetation. This method has recently been evaluated by Slater (10 1 

for the purpose of making atmospheric corrections for future Landsat sensors. 

Hariharan(") has suggested that measurements of polarization of the 

upwelling visible radiation can determine the aerosol content. However this has 

the same limitations of the surface reflectance as the angular scan method, and 

in addition, has the problem of the unknown variability of the polarization 

properties of the surfaces. 

A recent study by Barnes et al (12) evaluated the capabilities of 

satellite observations to monitor regional air pollution episodes. In this 

technique the aerosol content is inferred by comparing the satellite radiance 

with the radiance calculated from a model. This method is discussed in detail in 

Section 3.2. 

3.1 Review of Potter and Mendlowitz (8) Method 

Potter and Mendlowitz (PM) divided an area (approximately 40 x 20 km) 

into 25 strips, each with 20 lines, and about 230 pixels wide. For each strip, 

the MSS4 digital count was plotted against that of MSS5 for each pixel to obtain 

a scatter diagram of about 4600 points. The y-intercepts of the regression lines 

for each of the 25 strips were averaged, and found to be correlated with the 

aerosol optical thickness. It would seem better to consider a smaller area 

centered on the ground-truth site since it is not certain that the atmosphere 

3 



will be homogeneous over a 40 x 20 km area. In this study, areas of 20 x 10 and 
40 x 20 pixels centered on the ground-truth site were initially investigated. No 

significant difference in the regression lines was observed so the smaller area 

of 20 x 10 pixels (1.4 x 0.7 km) was used for economy in computing time. In 
addition to comparing MSS4 and 5, MSS5 and 6, and MSS4 and 7 were compared; 

before plotting and computing the regression lines, each count value is divided 
by the cosine of the sun zenith angle to provide an approximate normalization for 

intercomparison of different scenes, as done by PM. 

The results for the three scenes analyzed are given in Table 3-l; these 

particular scenes were chosen to cover a wide range of aerosol content (N). 

Table 3-l. Regression Line Intercept (a) and 
Slope (b) 

MSS 4 vs 5 MSS 5 vs 6 MSS 4 vs 7 

Place Date N a b a b a b - - - - - - 

Atlantic City 7-18-76 1.76 -1.44 1.03 0.00 0.52 -0.14 0.70 
Altantic City 4-18-76 3.29 -0.32 0.90 -0.05 0.87 -0.33 1.28 
Toole 7-10-76 0.44 -0.20 0.84 -0.60 0.82 -1.24 1.07 

The scatter diagrams showing the regression lines for two of the scenes 

are shown in Figures 3-l to 3-6 (Band 1 is MSS4, Band 2 is MSSS, Band 3 is MSS6, 

and Band 4 is MSS7). In these diagrams, the number of pixels having the same 

values are represented by the number up to 9 pixels, and then by A, B, C, . . . 

for 10, 11, 12, . . . pixels. The best correlation is found fo,r MSS4 vs MSS5, 

with the other channel correlations being particularly poor for Toole. However, 

the y-intercept values for MSS4 vs MSS5 show no correlation with the aerosol 

content, and show little difference in value, whereas PM showed a change from 14 

to 22 counts for the same angle of N. A limited hand check using a smaller area 

made in 1977 by SAI using San Diego Landsat data had also found intercepts near 

zero, and uncorrelated with N. Thus, it appears that the results of Potter and 

Mendlowitz cannot be duplicated. 
9 
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Atlantic City 4-18-76. 
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Figure 3-5. MSS5 (Band 2) Radiance vs MSS6 (Band 3) Radiance 
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3.2 Review of Barnes et al (12) Method 

The work of Barnes et al evaluated the use of satellite observations to -- 
monitor regional air pollution episodes, and attempted to relate the digitized 

visible radiance data to the measured sulphate aerosol values using a radiative 

transfer model. By making various assumptions regarding the aerosol composition, 

surface reflectivity and the mixing height of the pollution layer, good agreement 

was found between the satellite and surface measurements of the sulphate aerosol 

concentration. However, it should be noted that the agreement is strongly 

dependent on the model parameters, particularly the surface reflectivity, which 

is generally not known precisely. 

Calculations by Griggs (1) show that the upwelling visible radiance is 

most sensitive to the aerosol loading at low surface reflectivities. As shown in 

Figure 3-7, at low reflectivities the radiance increases with the aerosol 

loading, but at high albedos the radiance actually decreases as the aerosol 

amount increases. High albedos are generally found only over deserts, snow or 

clouds, so that for most of the earth's surface, increasing aerosol amounts 

result in increasing radiance. However, it is clear from Figure 3-7 that the 

radiance changes due to aerosol changes are best observed over oceans (A = 01, 

with the sensitivity decreasing over land surfaces (A = 0.1-0.2 typically). In 

addition, it can be seen that an error in estimating the surface reflectivity of 

the land can strongly affect the estimate of the aerosol amount from a radiance 

measurement. For example, a radiance of about 3 mw/cm2/um/sr could be 

interpreted as zero aerosol content for A = 0.15 or as 3N for A = 0.10. 

The calculations by Barnes et al - -' using their variational-iterative 

technique, and those by Griggs, using the Dave code, cannot be compared exactly 

from their published results since Barnes et al give radiance ratios rather than -- 
actually radiances, and different wavelengths, sun angles and aerosol models are 

used. However, the two sets of calculations may be compared approximately. The 

aerosol content (El) of Griggs represents the vertical optical thickness of the 

aerosols at 0.5 vrn (1N = .213 optical thickness). Since about 90% of the 

vertical optical thickness is typically in the lowest 3 km of the atmosphere, it 

16 
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Figure 3-7. Calculated Radiance vs. Aerosol Content as Function of Albedo 
for 0.75 pm. (Sun Z enith Angle = 630; Refractive Index = 1.5; 
Junge Size Distribution Parameter = 4.0). 
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can be assumed that N is directly related to the optical extinction in the 

surface layer. In the Eltermant6) model used by Griggs, 1N corresponds to a 

surface visibility of 25 km at 0.5 pm. The Barnes et al model assumes that a -- 
surface visibility of 23 km at 0.55 vrn (approximately the same as the Griggs 

model) corresponds to a sulphate concentration of 10 pg/m3. Since Barnes et al -- 
assume that the sulphate concentration is directly proportional to the optical 

thickness, then it follows that 1N is approximately equivalent to 10 pg/m3 of 

sulphate aerosols, i.e., 

Aerosol Content = O.l[SOi-IN (3-l) 

The Barnes et al model also includes other particulate matter in 

addition to the sulphates, but maintains a constant ratio between the two types 

so that Equation 3-l is still correct. 

The model conditions for the Barnes et al calculations (sun zenith -- 
angle = 60°, view angle = O", X = 0.65 pm) are similar to those used by Griggs 

(sun zenith angle = 63', view angle = O", X = 0.75 urn) in Figure 3-7. Thus the 

results in Figure 3-7 are plotted as radiance ratios and compared directly with 

the Barnes et al results in Figure 3-8. The agreement for A = 0.1 is good and -- 
essentially verifies that both calculations are probably yielding similar 

Its of Griggs for A = 0.15 and clearly 

reflectivity produces a large change in 

results. Figure 3-8 a 

indicates that a small 

the estimated sulphate 

lso shows the resu 

change in surface 

concentration. 

In addition to the problem of varying surface reflectivity, it should 

be noted that a measurement of intensity ratios suggested by Barnes et al is 

subject to significant errors. A ratio measurement of+lO% is probably 

optimistic, and as seen in Figure 3-9, it would result in a large uncertainty in 

the sulphate concentration. 

As discussed earlier, observations of aerosols over a land surface are 

difficult due to the fact that the surface reflectivity is generally not known 

and is quite variable both spatially and temporally. These errors due to surface 

reflectivity could be minimized by estimating the value of the surface 

18 
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reflectivity from clear day observations, and by averaging over several 

resolution elements. The former task is probably not simple, due to the 

reflectivity changing with sun angle and weather conditions on a diurnal basis, 

and with vegetation changes on an annual basis. If these errors can be reduced 

to acceptable values, then the accuracy of the radiance values measured by the 

satellite may become more important. 

It was suggested by Barnes et al that the GOES system would be useful -- 
for quantitatively monitoring regional air pollution episodes. However, the GOES 

data are digitized in large radiance steps so that each step covers a large range 

of optical thickness. The sensitivities of different satellite systems are 

illustrated in Figure 3-10. These plots are determined from the digital count 

vs. radiance for each satellite, in conjunction with the radiance vs. aerosol 

content for A = 0.1 in Figure 3-7. It is clear that the GOES system is the least 

desirable from the standpoint of sensitivity to aerosol, changes. The most 

sensitive satellite system is the AVHRR on the NOAA-6, which gives a sensitivity 

three times better than the MSS on Landsat, four times better than the VHRR on 

NOAA-5, and five times better than the VISSR on GOES.* These sensitivities shown 

in Figure 3-10 will be degraded by noise in the satellite system, but NOAA-6 will 

clearly provide the best sensitivity to aerosol changes. 

* Noted added in press: Private communications from J. Barnes of ERT and R. 
Fraser of NASA-GSFC indicate that analyses of NOAA-5 and GOES data for elevated 
pollution episodes in the northeastern United States have shown greater radiance 
sensitivity to aerosol content than suggested by the calculations in Figure 3-10. 
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4. DATA ANALYSIS METHODS 

The method of analyzing the Landsat computer compatible tapes and raw 

tapes has been described previously. (1) In this study an improved sun-angle 

correction factor has been applied to the measured MSS radiances to normalize 

them to standard conditions. 

4.1 Radiance Data 

4.1.1 Sun Correction Factor 

In order to compare Landsat data taken at different times, and hence 

different sun angles, the radiance values are normalized to standard conditions 

of nadir viewing (9 = 0) and a sun zenith angle too) of 63.3'. The correction 

factors applied to the measured radiance values are determined from theoretical 

calculations. In the previous Landsat study(') a single set of correction 

factors, based on Monte Carlo calculations, was applied to each MSS channel. For 

this study, improved sun-angle correction factors have been calculated separately 

for each channel, using the Dave(13) code and a model which fit the Landsat 2 

data obtained at San Diego (1) . The sun correction factors for MSS6 and 14SS7 

which are used in this study are shown in Figures 4-l and 4-2. 

4.1.2 Water Vapor Correction for MSS7 

There is significant absorption by atmospheric water vapor in the 

spectral bandpass of MSS7. Pitts et a1(14) calculated the atmospheric -- -- 
transmission for the MSS7 channel as a function of water vapor content. Their 

results, based on high spectral resolution calculations, are shown in Figure 4-3. 

For convenience in this study, the curve in Figure 4-3 has been approximated by 

the equation 

T = exp(-.094u'43) (4-l) 

where T is the path transmission and 

u = w(1 + set go) (4-2) 

23 
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where w is the vertical water vapor content in preciptable cm and O. is the sun 

zenith angle. 

The values of w were determined for each Landsat overpass analyzed in 

this study by obtaining preciptable water vapor maps of the United States, or 

selected radiosonde data if the maps were not available, from the National 

Climatic Center in Ashville. 

The water vapor correction is applied to the MSS7 radiance values by 

multiplying them by l/-c. This approach, used by Pitts et al is a simplified one, -- 
ignoring scattering effects, but is justified since the correction is small, and, 

as is shown in Section 5, is not of significance in this study. 

4.2 Sunphotometer Data 

The method of analyzing sunphotometer data is well established and has 

often been described (e.g., Flowers et al (15)) . In this study, special -- 
consideration was given to the reliability of the instruments, since significant 

calibration problems have been experienced with the NOAA-EPA turbidity network 

sunphotometer (E. Flowers, NOAA, private communication). 
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5. RESULTS 

Significant results were obtained in this investigation; a linear 

relationship was found between the MSS7 radiance and aerosol content at the 

inland sites, but with higher radiance values and more scatter of data points 

than found over the ocean. By comparing the data at the inland sites with the 

ocean data. of San Diego, it is inferred that most of the differences are due to 

water turbidity effects. 

5.1 

tapes are 

Radiance Data 

The radiance values, for the inland sites, determined from the raw data 

compared in Table 5-l with those obtained previously (l) from the 

calibrated tapes, using the same pixels in each case. It is noted that, as 

expected, the main differences between the tapes occur in the lowest radiance 

values. Also shown in Table 5-l are the normalized radiance values, obtained 

previously(l) with the calibrated data, and those determined by applying the new 

sun-angle correction factor (Figure 4-2) to the raw radiance values. It is seen 

that the normalized raw radiances are significantly different from the normalized 

radiances that were obtained previously from the calibrated tapes. 

5.1.1 Water Vapor Correction 

Water vapor data were obtained from the National Climatic Center in 

Ashville in the form of precipitable water vapor maps of the United States, and 

radiosonde data for Glasgow AB, Montana,and Great Falls, Montana, for five dates 

for which maps were not available. These data are available only for times 

different from the Landsat overpasses, being about two hours earlier at Atlantic 

City, and about four hours earlier at the other sites, so some small differences 

probably exist between these measured water vapor amounts and those observed by 

Landsat. Fortunately, as seen in Figure 4-3, the water vapor transmission factor 

to be applied to the MSS7 radiance data is not very sensitive to changes in the 

water vapor content. 
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Table 5-1. Comparison of Raw and Calibrated Radiances (MSS7) 

Radiance (mw/cm2/um/sr) 

Target 

Atlantic City 
(Reservoir) 

Toole (Lake) 

Burke(River) 

DivideILake) 

Hill(River) 

Measured 

Date Calibrated Raw 

4-18-76 1.35 1.46 1.17 1.39 
6-12-76 1.35 1.30 1.00 1.16 
7-18-76 0.87 0.85 0.66 0.76 
8-22-76 1.62 1.65 1.36 1.57 
4-19-76 1.77 1.75 1.47 1.67 
8-23-76 1.58 1.57 1.40 1.50 
9-28-76 0.76 0.65 0.68 0.62 

6-04-76 0.95 0.95 0.71 0.79 
7-10-76 0.78 0.56 0.59 0.44 
7-28-76 0.61 0.59 0.47 0.48 
g-20-76 0.61 0.24 0.57 0.22 
7-22-77 0.61 0.53 0.48 0.42 
4-23-77 0.61 0.76 0.51 0.63 
5-11-77 0.61 0.60 0.48 0.47 

5-28-76 0.81 0.79 0.59 0.64 
7-21-76 1.32 1.27 0.99 1.12 

10-01-76 0.61 0.62 0.60 0.61 
6-28-77 0.84 0.86 0.63 0.68 

8-09-76 0.61 0.62 0.51 0.52 
9-14-76 0.61 0.66 0.56 0.60 

5-16-76 0.68 0.80 0.51 0.68 
9-19-76 0.61 0.32 0.57 0.31 

10-07-76 0.61 0.39 0.59 0.38 
8-08-77 0.61 0.67 0.50 0.60 

Normalized to 
8, = 63.3' 

Calibrated Raw 
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The vertical water vapor contents determined from the maps or 

radiosonde data are shown for the sites in Table 5-2, together with the 

transmission factors computed from Equation 4-l. The mean value of the 

transmission for this data set is 0.85kO.06 which is close to the value of 

0.81kO.10, suggested in our Landsat 2 study, (1' to be used in the absence of 

water vapor information. 

The normalized radiance values before and after correction for the 

water vapor absorption are also given in Table 5-2. It should be noted that 

these radiance- values have been normalized to the mean earth-sun distance since 

the data were obtained at different times of the year. These radiance values 

before and after the water vapor correction are plotted against the aerosol 

content (N) in Figures 5-l and 5-2, respectively. It is seen that the scatter of 

points is about the same in each figure, suggesting that the water vapor amount 

has little influence on the use of the MSS7 radiance to infer the aerosol 

content. This is perhaps more clearly shown by considering the regression line 

and error of estimate before and after the water vapor correction. The linear 

regression line for the uncorrected radiances R is 

R = .39 + .38N (5-l) 

with a correlation Coefficient (r) Of 0.91, and a standard error Of estimate (sd) 

of 0.17 

For the corrected radiances, the regression line is 

R = .44 + .46N 

r = .91 
(5-2) 

Sd = .22 

It is seen that the correction changes the regression line as expected, 

but that the correlation coefficient is unchanged, and that the error of estimate 

is actually larger with the correction. 
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Table 5-2. Radiance Values (MSS7) Corrected for Water Vapor Absorption 

Target Date 

Vertical 
Water Vapor 

Content (prxm) Transmission (-c) 

Normalized Corrected 
Radiance Radiance Aerosol 

(mw/cm2/um/sr) (mw/cm2hm/sr) Content (N) 

Atlantic City 4-18-76 1.93 0.85 1.40 1.65 3.29 
(Reservoir) 6-12-76 2.54 0.82 1.20 1.46 2.18 

7-18-76 1.22 0.87 0.79 0.90 1.76 
8-22-76 3.81 0.79 1.62 2.06 2.99 
4-19-76 1.52 0.85 1.69 1.99 2.89 
8-23-76 2.54 0.82 1.53 1.87 2.94 
9-28-76 2.54 0.81 0.62 0.77 0.72 

Toole (Lake) 6-04-76 1.40 0.86 0.81 0.95 0.72 
7-10-76 1.80 0.84 0.45 0.54 0.44 
7-28-76 0.66 0.89 0.50 0.56 0.44 
g-20-76 0.79 0.89 0.22 0.25 0.30 
7-22-77 1.83 0.84 0.43 0.52 0.20 
4-23-77 0.76 0.89 0.64 0.72 0.11 
5-11-77 1.20 0.87 0.48 0.55 0.06 

Burke (River) 5-28-76 1.02 0.88 0.66 0.75 0.58 
7-21-76 2.27 0.83 1.16 1.40 0.95 

10-01-76 1.42 0.84 0.61 0.73 0.72 
6-28-77 1.27 0.86 0.70 0.82 0.39 

Divide (Lake) 8-09-76 2.29 0.82 0.54 0.65 0.30 
g-14-76 1.16 0.86 0.61 0.71 0.30 

Hill (River) 5-16-76 0.50 0.91 0.70 0.77 0.67 
g-19-76 0.88 0.87 0.31 0.36 0.62 

10-07-76 0.76 0.88 0.38 0.43 0.53 
8-08-77 1.25 0.86 0.62 0.72 0.77 



l Atlantic City 

I 
N 

I 
2N 

Aerosol Content 

I 
3N 

Figure 5-1. Radiance vs Aerosol Content for MSS7 (uncorrected for water vapor). 



w 
N 

2 

l- 

0 

0 Toole 
l Atlantic City 
X Hill 
+ Burke 
A Divide 

+ 

X 
X 

0 

I 1 I 
0 N 2N 3N 

Aerosol Content 

Figure 5-2. Radiance vs Aerosol Content (MSS7) [corrected for water vapor). 



5.2 Radiance-Aerosol Content Relationship 

The San Diego data were always taken with the same Volz sunphotometer 

whose calibration was checked periodically and found to be stable, so the error 

should not be more than about +0.02 in optical thickness, or _+O.lN. The data for 

the present inland sites were obtained by different instruments at each site, so 

there is more potential for error. However, the instruments used at the LACIE 

sites were carefully checked before and after the program by NASA-JSFC, and it is 

considered that the instruments were stable. The accuracy in the actual readings 

in the field is perhaps questionable sinceprofessionalobservers were not made 

used 

turb 

been 

. A larger error is possible for the Atlantic City site which is part of the 

idity network operated by NOAA-EPA. Considerable calibration problems have 

experienced with their sunphotometers (E. Flowers, NOAA, private 

communication). In a study(16) with NOAA, we have found up to 16% changes in the 

IO of the NOAA-EPA sunphotometers in a period of a year. This is equivalent to 

It is apparent in comparing the MSS7 radiance-aerosol content 

relationship for the inland sites (Figure 5-l) with the MSS6 relationship 

obtained for San Diego (Figure 2-l) that the inland sites not only show 

considerably more scatter of data points, but also show higher radiance values 

than expected. 

The larger scatter of points for MSS7 may be due to (1) errors in the 

sunphotometer data, (2) radiance errors in the MSS7 data tapes, (3) errors in the 

sun correction factors, (4) water vapor absorption effects in MSS7, (5) more 

variability in the aerosol properties at the inland sites, (6) variability in the 

adjacency effect at the inland sites, and (7) variability in the inland water 

turbidity. The higher than expected radiance values for MSS7 may be due to (1) 

the adjacency effect, (2) water turbidity effects, (3) the aerosol properties 

being different between the inland and ocean sites, and (4) incorrect radiance 

calibrations being used for MSS7. These error sources are discussed in the 

following section. 

5.3 Error Sources 

5.3.1 Sunphotometer Errors 
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an error of .160 in optical thickness, or 0.75N, for unit airmass (the error 

would be 50% of this for a measurement through an airmass of two). No 

information is available on the stability of the instrument at Atlantic City, 

except for a three-point Langley plot made with data obtained on 4-18-76 (one of 

the overpasses used in this study). Although only three points are not generally 

considered useful, on this occasion the plot did show excellent agreement with 

the given instrument calibration. In addition, the scatter of the Atlantic City 

data about the regression line seems similar to that of the LACIE data, so it is 

assumed that no unusual instrument errors are associated with it. 

In summary, the aerosol content is probably accurate to about +O.lN, 

and the instrument errors do not significantly contribute to the scatter of data 

points. 

5.3.2 Radiance Errors 

Fraser made calculations of the noise equiva lent rad iance (NER) of 

a single pixel for each of the Landsat 1 MSS channels based on preflight 

calibrations obtained through the complete system, including the digitization. 

The NERs, as shown by Griggs, (1) are equivalent to approximately half a 

digital count in each channel, so that we can say that the radiance error for a 

single pixel is &l count with a probability of 0.95. There appear to be no 

similar calculations for Landsat 2 readily available, but it is reasonable to 

assume that the errors are very similar. The errors are, of course, reduced by 

the square root of the number of pixels when averaging over a target area. 

For the San Diego and Salton Sea targets of our previous study, the 

digital counts were averaged over 40 pixels, whereas the inland targets, being 

small, permitted averaging only over 9 pixels, so the errors in the San Diego and 

Salton Sea data should be about half those for the inland data, in a given MSS 

channel. The radiance errors for the different target sizes, assuming an NER of 

half a count for a single pixel, are given in Table 5-3. These errors should be 

reduced by the sun correction factor (0.85 average) when applying them to the 

radiance-aerosol content relationship. It is noted that MSS7 shows a larger 

error than MSS6 so that a larger scatter of points would be expected in MSS7 than 

in MSS6, as found in Section 5.2. 
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Table 5-3. MSS Radiance Errors (NER) (mw/cmL/pm/sr) for Different Target Sizes 

MSS4 

1 Pixel 9 Pixels (inland) 40 Pixels (ocean) 

.lOO .033 .016 

MSS5 .067 .022 .Oll 

MSS6 .058 .019 .009 

MSS7 .168 .056 .027 

Based on the good linear radiance-aerosol content relationship found at 

San Diego, it is assumed that the MSS calibrations were quite stable during the 

period 1975-1977, when the data for this study were gathered. However, the 

absolute accuracy of the MSS radiance values is uncertain; our previous study (1) 

showed that calibration differences existed between Landsat 1 and Landsat 2. 

5.3.3 Sun-Angle Correction Factor Errors 

The sun correction factors are different for each MSS channel due to 

the difference in wavelength, and are based on calculations with the Dave 

scattering code. Since the same range of sun angle is found for each data set 

(ocean and inland) the correction factors probably do not contribute to any 

differences between the data sets. 

5.3.4 Water Vapor Absorption Effects 

It was shown in Section 5.1.1 that the correction for water vapor 

absorption in the MSS7 radiances did not significantly change the scatter of data 

points in the radiance-aerosol content relationship. Thus, it is assumed that 

the uncorrected radiance values at San Diego and the inland sites may be directly 

compared without significant uncertainty. 
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5.3.5 Effects of Aerosol Properties 

The previous study (1) showed theoretically that a change in the aerosol 

properties (size distribution and refractive index) causes a change in the slope 

of the radiance-aerosol content relationship. Thus, a different slope of the 

radiance-aerosol content relationship might be observed at inland sites, where 

continental aerosols predominate, in comparison with the ocean site, where 

maritime aerosols predominate. In addition, the properties of the aerosols are 

likely to be more variable at the inland sites than over the ocean, thus 

producing more scatter in the inland data points. 

5.3.6 Adjacency Effects 

The higher albedo land surrounding an inland body of water is 

theoretically predicted to increase the radiance values over the water. In 

addition, the difference in the size of each body of water, the difference in the 

type of surrounding terrain, and the changes in the terrain albedo between 

overpasses at each site, should all contribute to scatter in the data points in 

the radiance-aerosol content relationship. A detailed discussion of adjacency 

effects is given in Section 5.4. 

5.3.7 Water Turbidity Effects 

Suspended matter in water increases the apparent reflectivity of the 

water since some of the solar radiation which penetrates the water is 

backscattered by the particles, thus increasing the upwelling radiance observed 

by the satellite. For the MSS6 channel, the radiation penetrates about 40 cm, 

and for XSS7, about 14 cm. Thus, the MSS7 radiance is less susceptible to 

suspended matter, but it can be seen clearly in MSS4, 5,and 6 imagery, that 

considerable water turbidity (man-made or natural) occurs in many inland bodies 

of water. Even if the water turbidity is not apparent in the MSS7 imagery, it 

may still affect the more sensitive digital radiance data. Thus, the MSS7 

radiances for inland bodies of water might be higher than for the ocean which 

generally shows little suspended matter except in some coastal regions. In 

addition, the variability of the water turbidity should contribute to the scatter 

of points in the inland radiance-aerosol content plots. 
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Both water turbidity and the surrounding higher albedo land are 

expected to produce similar effects on the radiance observed over the body of 

water. However, the relative importance of each effect can perhaps be determined 

since the adjacency effect theoretically depends on various measurable parameters 

such as size of the body of water, land albedo, and aerosol content, all of which 

should not influence the water turbidity effect. This possibility is discussed 

in Section 5.5. 

1 

h 

4 Adjacency Effects 

It has been theoretically predicted (17,18,19) that the presence of high 

bedo land adjacent to the low albedo water target can significantly increase 

e radiance observed over the water in comparison with an infinite body of 

water. This potential problem was recognized in our original Landsat 1 

study, (20) and San Diego and Salton Sea data indicated that the effect was 

negligible beyond about 400 m from the boundary between land and water. The 

present study enables a more detailed investigation of the effect, which depends 

on the size of the water body, on the magnitude of the land albedo, and on the 

aerosol content, to be made since these parameters all vary at the inland sites. 

5.4.1 Theory 

The Monte Carlo calculations of Pearce (18) appear better suited to the 

present analysis than the work of Turner (17) or Otterman and Fraser (19) , since 

the latter two studies use only a simplified single scattering atmospheric model. 

In addition, the results of Pearce are presented in a form which can readily be 

compared to the Landsat data being analyzed in this present study. 

Pearce made calculations of the variation of intensity across the 

boundary between two semi-infinite surfaces of differing Lambertian albedo as a 

function of aerosol optical thickness and wavelength for several pairs of 

albedos. The pairs did not include albedos of 0 and 0.2 which would best 

represent the water and land surfaces in the present study, but the results given 

by Pearce can be interpolated/extrapolated since he shows that the adjacency 

effect is proportional to the albedo difference between the two surfaces. The 

results for an albedo pair (0,0.2) in Figure 5-3 were determined from plots given 
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Figure 5-3. Intensity vs Distance from Boundary for Step Function Albedo Pattern (0,O.Z) 
(after Pearce(18)). 



by Pearce, and show that the radiance value levels off rapidly when passing from 

a land surface to the ocean, especially for zero to normal aerosol content. 

However, it is noted that even at 10 km distance, the asymptotic radiance value 

has not been reached; at the 1 to 2 km distance used for the San Diego site, the 

plots indicate a radiance about 15% higher than an infinite surface of zero 

albedo. Pearce also shows that the adjacency effect is approximately independent 

of wavelength, being about the same for a given aerosol optical thickness 

regardless of wavelength, thus enabling Figure 5-3 to be applied to all MSS 

channels. (N represents an optical thickness of 0.212 in the work of Pearce.) 

Pearce also made calculations for a square target surrounded by an 

infinite surface of a different albedo, which can be related to the inland bodies 

of water in this study. Figure 5-4, which is deduced from the plots given by 

Pearce, shows the radiance at the center of the target for two albedo pairs, 

(0,0.2) and (0.2,0), as a function of the size of the target. The smallest 

dimension of each target in this study are marked on the abscissa. Examination 

of Figure 5-4 in comparison with Figure 5-3 shows that for inland sites the 

radiances, for the albedo pair (0.0.2) should be higher than at the ocean by 

about 5% for ON, 20% for lN, and 45% for 3N. (These values are just rough 

estimates as they are based only on the plots shown by Pearce, since he does not 

provide numerical data; and, our targets are not square, and are not surrounded 

by a uniform surface.) These predicted differences must be modified in comparing 

our ocean and inland targets, since the land albedo at San Diego for MSS7 is 

about 0.35 compared to about 0.20 at the inland sites. The figures of Pearce are 

not precise, and do not allow the albedo effect to be estimated, but as noted 

earlier, the adjacency effect is proportional to the albedo difference. If this 

proportionality applies to distances of 1 to 2 km from the boundary, it is found 

that the radiance at the inland sites would actually be about 5% lower than at 

the ocean at San Diego for ON, and only 15% higher for N and 35% higher for 3N. 

5.4.2 Landsat Data 

The theoretical results may be compared with the Landsat data obtained 

at San Diego and the Salton Sea in our previous study. A review of the San Diego 

data showed that the ocean radiances become essentially constant within 2 pixels 

of the coastline independent of wavelength and aerosol content for the range 
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0.29N to 1.48N. At the Salton Sea where the surrounding desert albedo is much 

higher than that of the San Diego land surface, the water radiances take 3-6 

pixels to become constant. These results are in reasonable agreement with the 

theoretical predictions, although the measured water radiances could well be 

enhanced by bottom reflectance and suspended matter in the near shore region 

making the measured change across the boundary slower than in ideal model 

conditions. It is virtually impossible to check the predicted adjacency effect 

out to large distances from the shore line since we cannot be sure of the 

homogeneity of the atmosphere, and, the ocean is not a Lambertian reflector. 

The San Diego and Salton Sea data for MSS7 are shown in Figure 5-5. 

Raw data tapes were not readily available for these sites, so only radiances for 

aerosol contents greater than 0.75N are shown, since our analysis of the inland 

sites showed the radiance values at these aerosol contents to be about the same 

on both the calibrated and the raw tapes. These radiance values are uncorrected 

for water vapor absorption, but as shown earlier for the inland sites, the 

scatter of points in the radiance-aerosol content relationship is not 

significantly affected by the water vapor correction. There is no obvious 

difference between the San Diego and Salton Sea data. This contrasts with the 

calculations of Pearce, which suggest that the Salton Sea radiance should be 

enhanced due to the high desert albedo (0.5) by about 10%. 

Also shown in Figure 5-5 are the MSS7 radiances (also uncorrected for 

water vapor absorption) for the inland sites; these are generally slightly higher 

than for San Diego as more clearly demonstrated by the regression lines for each 

data set: 

San Diego and Salton Sea: R = .31 + .33N 

r = .48, sd = .12 (21 points) 

Inland Sites: R = .39 + .38N 

r=.91, sd= .17 (24 points) 

(5-3) 

(5-4) 
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The difference in the regression lines is in fair agreement with the 

theoretical predictions discussed above. An analysis of the inland data in 

Section 5.5, shows that the inland radiance values are on average 21% higher than 

would be predicted by the San Diego and Salton Sea regression line. The 

possibility that the higher inland radiances are due to water turbidity instead 

of, or in 

5.5 

water and 

addition to, adjacency effects is also discussed in Section 5.5. 

A Comparisonof Inland and Ocean Landsat Data .- - 

Table 5-4 shows the radiances measured at the inland sites for the 

surrounding land in comparison with the ocean radiances which would be 

predicted, for the measured inland aerosol contents, from the San Diego and 

Salton Sea regression line given in Equation 5-3. The radiance differences 

(referred to as RD from here on) between the observed inland water radiances and 

those predicted by the ocean data are assumed to be due to (a) adjacency effects 

at the inland sites, (b) inland water turbidity effects, (c) a difference in 

aerosol properties at the inland sites and the ocean, or (d) errors in the 

sunphotometer data. 

The fractional RD (FRD) (i.e., the radiation difference expressed as a 

fraction of the predicted ocean radiance) for MSS6 and MSS7 are given as a 

function of aerosol content in Figures 5-6 and 5-7; MSS6 shows a clear tendency 

for the FRD to decrease with increasing N, which would be expected if the FRD is 

due to water turbidity effects, whereas the adjacency effect predicts an increase 

in FRD with N. A decrease in FRD with N is not so obvious for MSS7, but 

certainly there is not an increase. Based on these plots, it appears that the RD 

can probably be attributed to water turbidity effects. 

The FRD for MSS6 and MSS7 are also plotted against the MSS7 radiance of 

the surrounding land, which is approximately normalized by multiplying it by the 

cosine of the sun zenith angle, in Figures 5-8 and 5-9. The land radiances were 

obtained as an average, by eye, of the KS7 radiances within about 1 km of each 

site. These values are assumed to be proportional to the land albedo, and can be 

used for both MSS6 and MSS7 to investigate the effect of the land albedo on the 

FRD. The theory of the adjacency effect indicates that the FRD should increase 

with increasing albedo. The plots in Figures 5-8 and 5-9 show no correlation 
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Table 5-4. Comparison of Inland and Ocean Radiances 

P 
P 

Target Date 

Atlantic City l 4-18-76 
(Reservoir) 6-12-76 
(4 pixels wide) 7-18-76 

8-22-76 
4-19-76 
8-23-76 
9-28-76 

Toole (Lake) o 6-04-76 
(5 pixels wide) 7-10-76 

7-28-76 
g-20-76 
7-22-77 
4-23-77 
5-11-77 

Burke (River) + 5-28-76 .58 .66 .50 .16 
(9 pixels wide) 7-21-76 .95 1.16 .62 .54 

10-01-76 .72 .61 .55 .06 
6-28-77 .39 .70 .44 .26 

Divide (Lake) A 3-09-76 .30 .54 .41 .13 
(15 pixels wide) 9-14-76 .30 .61 .41 .20 

Hill (River) x 5-16-76 .67 .70 .53 .17 
(30 pixels wide) 9-19-76 .62 .31 .52 -.21 

10-07-76 .53 .38 .49 --ill 
8-08-77 .77 .62 .56 .06 

* (RD) 
**(FRD) 

Aerosol 
Content 
0 

MSS7 Radiance 
~mw/cm2/~m/sr) 

Inland 
Water 

3.29 1.40 
2.18 1.20 
1.76 .79 
2.99 1.62 
2.89 1.69 
2.94 1.53 

.72 .62 

Mean Inland 
__ -Ocean* Ocean 

1.39 .01' 
1.03 .17 

.89 -.lO 
1.29 .33 
1.26 .43 
1.27 .26 

.53 .09 

.72 .81 .55 .26 

.44 .45 .46 -.Ol 

.44 .50 .46 .04 

.30 .22 .41 -.I.9 

.20 .43 .38 .05 

.ll .64 .35 .29 

.D6 .48 .33 .15 

Inland-Ocean Inland 
Ocean** Water 

.Ol 

.17 
-.ll 

.17 

.34 

.I8 
17 A 

Mean .13 

.47 
-.02 

.08 
-.46 

.13 

.83 
45 A 

Mean .2I 

1.75 
1.50 
1.19 
2.03 
1.91 
1.93 
1.01 

1.18 
.73 
.80 
.77 
.83 
.97 
.87 

.32 

.a7 

.ll 
59 A 

Mean .47 

.32 
49 A 

Wean .41 

- :.;; 
-.22 

.ll 

Mean -.05 

1.11 
1.74 
1.34 
1.49 

1.07 
.88 
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between FRD and the land radiance, suggesting that the adjacency effect is not 

responsible for the FRD. 

The adjacency effect, according to theory, should be more apparent over 

a smaller target. In this study, the inland bodies of water are of varying 

shapes, so that the target area of importance in the adjacency effect is 

difficult to define. Probably the smallest dimension of the target is most 

important, so the area of the target is taken as the square of the smallest 

dimension for comparison. Figure 5-10 shows the FRD as a function of the 

relative area of the water body; there is no clear correlation, with the smallest 

and largest water bodies showing similar values of FRD. 

A correlation between the FRD in MSS6 and MSS7 is apparent in Figure 

5-11. Since both channels show no correlation between the FRD and land radiance 

or aerosol content, then it is probable that the correlation shown in Figure 5-11 

is due to water turbidity effects, aerosol properties, or errors in the value of 

N, all of which could produce similar effects on the FRD in each channel. If the 

aerosol properties were mainly responsible for the FRD in each channel, and hence 

the correlation between the channels, then the radiance intercept of the 

regression lines for the inland sites should be close to that for the oceans 

since N=O represents a pure molecular atmosphere. However, although Equations 

5-3 and 5-4 show the MSS7 intercepts to be similar, the MSS6 values are quite 

different as shown in the regression lines: 

San Diego: R = .37 + .54N (5-5) 

r = .93 sd = .07 (22 points) 

Inland Sites: R = .91 + .32 N (5-6) 

r = .83 sd = .22 (24 points1 

Thus, it appears that the aerosol properties do not significantly contribute 

to the FRD. 

Errors in N can occur due to instrument errors in the sunphotometer as 

discussed earlier, or they could be due to inhomogeneities in the atmosphere 

since the sunphotometer was never directly adjacent to the inland bodies of 

water. The Atlantic City observation was about 2 km from the reservoir, the 
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Toole observer was about 3 km from the lake, the Burke observer was about 3 km 

from the river, the Divide observer was about 500 m from the lake, and the Hill 

observer was about 8 km from the river. It would certainly have been desirable 

to have the observations made closer to the target, but since the data reported 

here are always for clear sky conditions, it is believed that atmospheric 

inhomogeneities were at a minimum. It is difficult to separate the contributions 

of errors in N and of water turbidity to the correlation between the channels in 

Figure 5-11, but a similar plot of the fractional radiance differences from the 

regression line (Equation 5-3) for the San Diego and Salton Sea data, shown in 

Figure 5-12, can help. For these observations, the same sunphotometer, known to 

be stable, was always used at both sites by a trained observer who made careful 

measurements only in the best conditions, i.e., with clear skies and a visually 

homogeneous atmosphere, and directly at the water's edge. Thus, little error is 

expected in the value of N at these sites. However, there is still a correlation 

between the radiance differences in each channel. This could be due to variation 

in the aerosol properties but since the correlation is particularly strong for 

the Salton Sea data where water turbidity has been observed in the Landsat 

imagery on occasion, it appears that water turbidity is most likely responsible 

for the correlation at these two sites. It is not unreasonable to also attribute 

the correlation at the inland sites to water turbidity, which is certainly often 

very apparent in the imagery. 
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It is concluded, then, that the apparent enhanced radiances, relative 

to ocean values, observed over these inland bodies of water are probably mostly 

due to water turbidity effects; uncertainties in the value of the measured 

aerosol optical thickness may contribute a little. No evidence of a significant 

adjacency effect could be found with the data available. 

5.6 Estimation of the Aerosol Content from Radiance Measurements 

The purpose of this investigation is to evaluate the usefulness of 

using MSS7 radiance measurements over inland bodies of water to determine the 

atmospheric aerosol content. It is apparent from the discussions in the 

preceding sections that a relationship similar to that found over the ocean does 

exist, but with more scatter of the data. It is probable that most of the 

scatter is due to water turbidity effects with perhaps some contribution from 

errors in the measured aerosol content. 

The error in determining the aerosol content (N) from a MSS7 radiance 

measurement (R) may be estimated by considering the regression line of N on R at 

the inland sites: 

N = -0.68 + 2.21R (5-7) 

r = .91, i.e, sd = .42 

A lower (optimistic) limit to the error is given by assuming that all 

the scatter of data in Figure 5-l is due to errors only in the measurements of N 

and R. In this case, the standard deviation o(N) of N is given by the product of 

the slope of Equation 5-7 and the NER (for a q-pixel target, and modified by a 

sun correction factor of 0.851 in Table 5-3, so that: 

a(N) = O.llN (S-8) 
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An upper (and more likely) limit is obtained if the scatter of data is 

assumed to be due to contributions from all the error sources discussed, so that 

the standard deviation of N is given by the standard error of estimate sd of the 

regression line, i.e., 

a(N) = .42N (5-9) 

For comparison, the MSS6 ocean data at San Diego has a regression line 

given by 

N = -0.48 + 1.60R (5-10) 

r= .93, sd = .12 

From Table 5-3, for a 40-pixel target, it is found that the error 

limits for the MSS6 ocean data are: 

.Ol I a(N) C .12N (5-11) 

showing the better accuracy of MSS6 measurements (with a smaller NER) over the 

ocean, where the error sources are at a minimum, and a larger target area can be 

used. 

The upper error limit for MSS7 at the inland sites would be reduced if 

the relationship were obtained from a large set of data for one site, thus 

minimizing the uncertainties in the measurement of N, and perhaps reducing the 

water turbidity effects. However, the errors at inland sites would still be 

significantly greater than over the ocean, perhaps precluding the use of inland 

sites for measurements at a given time and place. Inland bodies of water would 

be better used for determining average values (thus reducing the error) of the 

aerosol content; this could be a time average at a given site, or an area average 

at a given time if several sites are close together. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

It is concluded that, based on the limited data for five inland bodies 

of water, a linear relationship exists between the radiance measured by the 

Landsat 2 MSS7 and the aerosol content above the water. This relationship can be 

used to estimate the aerosol content with a standard deviation of 0.42N. This 

error could probably be reduced by obtaining data at a single site with just one 

sunphotometer, rather than' using several sites and several sunphotometers. 

However, the relationships would probably then be found to vary with each site, 

depending on the type of waterturbidity and type of aerosol, so probably the 

result found in this investigation is preferred for general application. 

The uncertainty in the aerosol content measured over an inland body of 

water is about three times greater than that found over the ocean for MSS6. 

Analysis of the data for MSS6 and MSS7 suggests that the larger uncertainty is 

mostly due to water turbidity, with little contribution from the adjacency 

effect. The water turbidity effects could be reduced by making narrow-band 

observations around 1 urn where the radiation penetrates water to only about 3 cm. 

However, the atmospheric aerosols scatter less at this longer wavelength so that 

the sensitivity of the technique would be reduced. In addition, there is 

presently no satellite sensor operating at this wavelength with a small enough 

spatial resolution to use the small inland bodies of water as targets. 

It appears that the relationship found in this investigation would best 

be applied to determining an average aerosol content over a period of time at a 

given target, or an area average at a given time over several targets close 

together; the averaging could reduce the uncertainty in the measured aerosol 

content to a useful level. 

The conclusion that the adjacency effect does not contribute 

significantly, in contrast to theoretical calculations, to the upwelling radiance 

over small bodies of inland water is important. There is concern for adjacency 

effects in scene classification for the Landsat thematic mapper, and it would be 

desirable to have experimental verification of the theoretical models that have 

been developed. 
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It is recommended that the adjacency effect be investigated 

experimentally by conducting a study, similar to this investigation, using 

oligotrophic lakes as targets, thus eliminating water turbidity effects, with 

ground-truth measurements of the optical thickness being made directly adjacent 

to the lakes. Such a program could provide input for modifying the theory of 

adjacency effects, and perhaps for determining an empirical correction, if 

necessary, for adjacency effects. 
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